Evaluation of Ponatinib in a Broad Cancer Cell Line Panel: Identification of DLBCL Sensitive Line

RESULTS

Potency of Ponatinib in a Panel of NHL Cell Lines

- **Potent inhibition of all GCB-DLBCL cell lines**
 - Ponatinib showed potent inhibition of growth of 5/9 GCB-DLBCL cell lines.
 - Ponatinib inhibited growth of 100% of GCB-DLBCL lines.

- **High potency in MCL lines**
 - Ponatinib showed high potency in inhibition of growth of 50% of MCL lines.

- **Steady-state levels**
 - Ponatinib steady-state levels were measured in NHL cell lines.

Ponatinib Inhibits Phospho-SRC in GCB-DLBCL Cell Lines

- **Phospho-SRC analysis**
 - Phospho-SRC (Tyr416) was evaluated 1 hr post-treatment.
 - Phospho-SRC (Tyr416) cross-reacts with other SRC family members.

Ponatinib Potently Inhibits a Small Subset of Cancer Cell Lines

- **B-cell acute lymphoblastic leukemia**
 - Ponatinib inhibited growth of 100% of B-cell acute lymphoblastic leukemia.
 - Ponatinib inhibited growth of 200% of B-cell acute lymphoblastic leukemia.

Study Aims

- To obtain a broad, unbiased, assessment of the anti-proliferative effects of ponatinib, we screened a panel of 246 human tumor cell lines.

Ponatinib

- Ponatinib is a potent pan-BCR-ABL inhibitor approved for patients with refractory or T315I-chronic myeloid leukemia or Ph+ acute lymphoblastic leukemia.

Summary of In Vitro Efficacy

- **Tumor Growth Inhibition/Regression (-)**
 - Ponatinib showed potent inhibition of growth of 100% of GCB-DLBCL cell lines.

CONCLUSIONS

- **Ponatinib has promising in vitro and in vivo activity against a substantial subset of GCB-DLBCL models tested, with potency similar to that observed in BCR-ABL models**

REFERENCES

3. Gauldie, J, et al. Complementarity of analysis of the 121 inhibitors of ponatinib, and all other approved BCR-ABL (bcr-abl tyrosine kinases inhibitors) that are not included in Table 1. Phospho-SRC (Tyr416) is a substrate for the pTyr1051 of BCR-ABL, which is also activated in chronic myeloid leukemia and in some acute leukemia subtypes.

Ariad Pharmaceuticals, Inc., Cambridge, MA, USA

Presented at the 57th American Society of Hematology Annual Meeting and Exposition, December 5–8, 2015, Orlando, Florida